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Abstract

For complex systems that embed automation, but also rely on human interaction for guidance and
contingency management, holistic models are needed that provide for an understanding of the
individual human and computer elements, and address the critical interactions of such complex
systems. Discrete event simulation (DES) models and system dynamics (SD) models are two
different approaches that can be used to address these requirements. Both modeling approaches
can support the designers of future autonomous vehicle (AV) systems by simulating the impact of
alternate designs on vehicle, operator, and system performance. However, the DES modeling
approach is likely best suited for using probabilistic distributions to accurately model an operator
who is a serial processor of discrete tasks, as well as an environment with randomly occurring
events. The SD modeling approach is better suited for modeling continuous performance feedback

that is temporally dependent and is affected by qualitative variables such as trust.

Keywords: human performance modeling, discrete event simulation, system dynamics,

autonomous vehicles

Relevance of findings: This article illustrates how discrete even simulation and system dynamics
models can be used to explore and diagnose human-automation performance parameters. Such
approaches allow designers the ability for cost and time effective evaluations without conducting

extensive experimentation, which is critical for the rapidly evolving world of autonomous systems.



Introduction

A variety of empirical and analytical methods have been developed to inform design
decisions for new systems that leverage increasing degrees of automation. Such methods include
the use of human-in-the-loop studies with prototypes as test environments, cognitive
walkthroughs, cognitive task analyses, heuristic analyses and other structured techniques for the
development of predictive decision making (Crandall, et al., 2006; Dekker and Woods, 1999;
Hollnagel, 2003; Klein, 2000; Klein, et al., 1989; Lewis and Wharton, 1997; Nielson and Mack, 1994;
Novick and Hollingsed, 2007; Preece, et al., 1994; Rubin, et al.,, 1988; Smith, et al., 1998; Smith et al,,
2006).

Various types of computational models and simulations have also been implemented to help
designers envision the impact of their design on human and system performance. Such models
range from extensions of the GOMS model (Card, et al., 1983; John, 1995; Kieras, 1991, 2004; St.
Amant, et al,, 2005; Williams, 2005) to the use of cognitive architectures that can be used to model
performance in a given task/system context and generate performance predictions (Byrne and
Kirlik, 2005). Examples of such cognitive architectures are ACT-R (Anderson, 1993; Anderson, et
al., 2004), SOAR (Laird et al., 1987; Nason, et al., 2005) and EPIC (Kieras and Meyer, 1997; St.
Amant, et al,, 2005). More recently, other types of simulation models have also been developed to
evaluate human-automation systems and to provide more holistic evaluations of human system
performance (Bolton, et al,, 2013; Pritchett and Christmann, 2011; Nehme, et al,, 2008; Donmez, et
al,, 2010).

This effort focuses on two classes of models that are routinely used in other domains like
logistics and industrial process modeling, but that are under-utilized in human-system integration
settings. These are Discrete event simulation (DES) models and system dynamics (SD) models,
which are simulation models that allow for cost and time effective evaluation of different design

parameters for futuristic systems without conducting extensive human-in-the-loop



experimentation, which is particularly critical in early conceptual design phases. This is especially
true for human supervisory control systems that require human interaction with and supervision of
a complex system with embedded automation. Holistic models such as discrete event simulations

or system dynamics models can be used to not only understand the individual elements of complex
automated systems that incorporate humans, but also understand the critical interactions that take
place between the two.

The discrete event simulation (DES) approach is based on queuing-based constructs
including events, arrival processes, service processes, and queuing policies to model the human
operator as a serial processor of tasks (Law & Kelton, 2000). The input variables are primarily the
distributions of the arrival rate of various operator tasks and the distributions of service times for
these tasks. These distributions either must be estimated or drawn from previous experimental
data. While their use in human performance modeling has been limited, DES models have been
successfully applied to supervisory control domains such as air traffic control (Schmidt, 1978), as
well as multiple unmanned vehicle control by a single operator (Donmez, Nehme, & Cummings,
2010; Nehme, Mekdeci, Crandall, & Cummings, 2008; Nehme, 2009).

System Dynamics (SD) draws inspiration from basic feedback control principles to create
simulation models (Sterman, 2000). SD constructs (stocks, flows, causal loops, time delays,
feedback interactions) enable investigators to describe and potentially predict complex system
performance, which would otherwise be impossible through analytical methods (Forrester, 1961).
SD models have been used in a number of large and small scale systems with social elements
including management, economics, logistics, education, and disease spread (Sterman, 2000). More
relevant to real-time human-automation collaborative scheduling and human decision making, a
few SD models have been developed to represent human supervisors monitoring automated

systems (White, 2003), a number of command and control applications (Coyle, Exelby, & Holt,



1999), and human decision-making in high-stress situation with interruptions (Rudolph &
Repenning, 2002).

In order to illustrate how such models can be used to explore human-autonomous system
design trade spaces, DES and SD models will be presented attempting to capture the complex
interactions of a single operator controlling multiple autonomous vehicles. Each modeling approach
will be explained, and then compared in a discussion of which method is the most appropriate for

various applications that involve human decision in a supervisory control task.

Discrete Event Simulation

Discrete event simulation (DES) is a technique which models a system as a chronological
sequence of events representing changes in system states (Law & Kelton, 2000). DES is particularly
suited to modeling human-autonomous systems due to their event-driven nature, i.e., a human tells
a ground robot where to search next once one goal has been achieved. Based on queuing theory,
DES models represent the human as a single server serially attending the arrival of complex events
(Carbonell, Ward, & Senders, 1968; Senders, 1964; Sheridan, 1969). Queues for the operator’s
attention build as events arrive that require on operator’s attention, and if not attended to
immediately, are either delayed or forgotten, with perhaps serious consequences for the
autonomous system. DES models can represent operator parallel processing through the
introduction of multiple servers (Liu, 1997; Liu, Feyen, & Tshimhoni, 2006), if appropriate.

In order to illustrate just how a DES model can be used to predict possible system
performance, a DES model designed for single operator control of multiple unmanned vehicles will
be discussed (Nehme, 2009). The test bed used for this DES model is called the Research
Environment for Supervisory Control of Heterogenecous Unmanned Vehicles (RESCHU) simulator,

discussed in detail in the next section.



The RESCHU Test Bed

RESCHU allows operators the ability to control a team of Autonomous Vehicles (AVs)
composed of unmanned air and underwater vehicles (UAVs and UUVs). The primary mission for all
vehicles is surveillance with the ultimate goal of locating specific objects of interest in urban coastal and
inland settings. There exists a single UUV type, and two UAV types, with one providing high level sensor
coverage (a High Altitude Long Endurance UAV), while the other provides more low-level target
surveillance and video gathering (a Medium Altitude Long Endurance UAV). The primary assumptions
in RESCHU are that the AVs are capable of maintaining stable flight (UAV) or sustained forward
motion (UUV), and executing all navigation and flight control actions with goal-based discrete input
by the operator

The RESCHU interface consists of five major sections (Figure 1). The map (Section A) displays
the locations of vehicles, threat areas, and areas of interests (AOIs). Vehicle control is carried out on the
map, where operators can change vehicle paths or assign a new AOI to an AV. Significant events in the
mission (i.e., vehicles arriving to goals, or automatic assignment to new targets) are displayed in the

message box, along with a timestamp (Section C). When the vehicles reach an AOI, a simulated video

Figure 1. RESCHU interface (A: map, B: camera window, C: message box, D: control panel, E:

timeline)



feed is displayed in the camera window, where participants visually identify a target. Example targets and
objects of interest included cars, swimming pools, helipads, etc. The control panel (Section D) provides
AV health information, as well as information on the AV’s mission. The timeline (Section E) displays the
estimated time of arrival to waypoints and AOlIs.

When the AVs complete their assigned tasking, an automated path planner automatically assigns
the HALE UAV to an AOI that needs intelligence, and the MALE UAVs and UUVs to AOIs with pre-
determined targets. The automatic assignments AOIs are made with a greedy algorithm and thus are not
necessarily the optimal choice. The operator can change the assigned AOI, and must reroute the AVs to
avoid threat areas by changing an AV’s goal or adding a waypoint to the path of the AV in order to go
around the threat area.

When an AV arrives at an AOI, a visual flashing alert indicates that the operator can engage the
camera. The operator then completes a search task by panning and zooming the camera until the specified
target is located. Once complete, the AV is automatically re-assigned to a new AOI. Participants
maximize their score by 1) avoiding threat areas that dynamically change, 2) completing search tasks
correctly, 3) taking advantage of re-planning when possible to minimize vehicle travel times between

AOQIs, and 4) ensuring an AV is always assigned to an AOI whenever possible.

The DES Model of the RESCHU Environment
The DES model was specifically designed to evaluate the impact of changing vehicle team
structure, (such as numbers and types of vehicles), as well as the impact of operator attention
allocation strategies on overall system performance. This model can output a prediction of how
many AVs of different types a single operator can control, but it can also predict how much
autonomy a team of vehicles will need if a certain level of operator workload is desired, as well as

the impact of different operator control strategies and vehicle collaboration strategies.
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Figure 2. A DES model of a single operator controlling multiple unmanned vehicles
There are three components of the DES model in Figure 2 that can be generalized to human-
autonomous system interaction: 1) the vehicle-team model, 2) the environment model, and 3) the
human-operator model. For the vehicle-team model in Figure 2, team structure means the number
and types of AVs under control (which could be dissimilar, i.e., meaning that the system could
include a UAV and a UUV). The level of vehicle autonomy is captured through a concept known as
Neglect Time (NT) (Olsen & Goodrich, 2003), since it represents the time a vehicle can operate
without human intervention. Thus the more autonomous a vehicle, the longer it can be neglected.
For example, Mars Rovers are much more autonomous than present-day AVs since the Rovers can
operate for days without human intervention, while operational UGVs need human input for
constant operation. Lastly, for the vehicle-team model, the degree of autonomy between vehicles is
represented by the vehicle collaboration input. This represents how much vehicles coordinate
among themselves for task completion, which increases as teams of AVs become more
decentralized (Cummings, How, Whitten, & Toupet 2012).
When discrete events occur, they generate tasks that can cause a queue for the operator’s

attention. There are generally two types of tasks that are generated in this system. The first type is



endogenous events, which are created internal to the system. Endogenous events can be either
vehicle-generated, (e.g., a vehicle requires a new goal upon arriving at the previously-directed goal),
or operator induced (e.g., an operator may think a new path is better than the one planned by the
automation and thus changes it). The second type is exogenous events, which are environmentally
driven (and thus labeled as the environment model in Figure 2). They may be unexpected, such as
an emergent threat area which requires the operator to re-planning AV paths. The interarrival
times for these events are represented by Ays.

The last major component of the model in Figure 2 is the Human Operator Model. Based on
a single server queue with multiple input streams, the operator can attend to only one complex
event at a time, generating the service time p;, which could result in a queue of tasks. The length of
time an operator interacts with the system is captured through a probability distribution of service
times, Ws, thus capturing variability of performance both between and within different operators.

Interaction Time (IT) in Figure 2 represents how an operator interacts with a single
event/AV. How and when operators elect to attend to the AVs as a group is termed attention
allocation (Crandall & Cummings, 2007). In the model in Figure 2, attention allocation is
represented by two variables. This first is management strategy, which can vary between micro
(operators feel they must constantly direct and correct the automation), and macro (operators are
comfortable letting the automation do most of the work and only intervene when the automation
requests intervention.) This variable can act as a trust proxy.

The second attention allocation variable is the order in which the different vehicles are
serviced. When multiple vehicles require operator attention simultaneously, the operator must
select the next vehicle to be serviced. Typical queuing strategies such as First In First Out (FIFO) or
preemptive priority queuing (highest priority always gets moved to the head of the queue) can be
used to represent operator selection strategies (Pinedo, 2002).

While the service time and queuing strategy representations are not new in DES and
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queuing theory, the novel contribution of the Human Operator Model in Figure 2 is the relationship
between utilization and situation awareness. Situational awareness (SA) is defined as the
combination of perception of elements in the environment, the comprehension of their meaning,
and the projection of their status in the future as relevant to the management process (Endsley,
1995). Utilization is defined as percent busy time, or the time an operator is actively engaged in
some kind of task. When operators are very busy with high levels of utilization, they could be too
busy to accumulate the information required to build SA, which has been shown to negatively affect
performance (Cummings, Clare, & Hart, 2010). Conversely, when under-utilized, operators can
become less alert or attentive, resulting in low SA and degraded performance (Cummings,
Mastracchio, Thornburg, & Mkrtchyan, 2013).

In the model in Figure 2, the effect of both high and low utilization and reduced situational
awareness is the creation of additional wait times, which increases the time it takes the operator to
notice the needs of the system. This penalty, which is added to the service time, is expressed
through a concave upwards parabolic function inspired by the Yerkes Dodson Law (Yerkes &
Dodson, 1908). Previous research has shown that using such a relationship can substantially
improve model performance as compared to a more traditional DES model that does not explicitly

account for the impact of operator workload on performance (Donmez et al,, 2010).

DES as a Design Tool
As previously discussed, a potential strength of a DES model is in the conceptual design
stage of an autonomous vehicle network, specifically in terms of the generation of requirements
and initial design stages. Designers and engineers of unmanned vehicle teams in the future will face
a myriad of choices including various vehicle types and capabilities, or even the same vehicle but
with many different capabilities due to modular sensor design. These different design choices

should also consider the impact on the ability of operators to supervise the teams effectively.
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Therefore, in building effective AV systems, the collective impact of different design choices must be
taken into consideration to ensure effectiveness of operator supervision.

Given the limitations of human-in-the-loop experimentation for guiding design choices in
futuristic heterogeneous unmanned and autonomous systems, a DES model like the one depicted in
Figure 2 can be used to provide rapid prototyping evaluation capabilities. The model is able to
describe the behavior of the system in question, given a specific set of input conditions, as well as
predict the effects of changes in one or more system design variables on the behavior of the system.

Figure 3 is an example of a trade space exploration that was generated by the model in
Figure 2 using data to form the distributions from 80 participants who conducted missions using
RESCHU (Figure 1) . Consider the case of an engineer who wishes to design a system where a single
operator must analyze imagery from multiple UAVs under his/her supervision in a search mission
where possible targets of interest could be hostile. The number of UAVS, service times for image
search tasks, and reactions times to emergent events to represent an operator’s workload/situation
awareness can be used as inputs to a simulation model like that previously described, with the
model in Figure 2 generating predicted average search task wait times with the number of objects
correctly identified (the key performance parameter). In order to generate a Pareto front, the four
curves in Figure 3 represent four different design cases with the number of UAVS under control
varied from 1-6. For the base curve, the switching strategy was set to operators prioritizing vehicle
path planning over an imagery search task, with set times for the image search times (labeled
Service Times in Figure 3) and the time it takes for an operator to recognize an event needs
servicing (labeled Reaction Times in Figure 3.)

Each of the other three curves in Figure 3 varies just one of the base-case variables. So the
Switching Strategy curve represents a shift in operator priorities such that image search was given
priority over vehicle replanning, and the other two variables were held constant. Similarly, for the

Service Times curve, all service times were improved by 5s and for the Reaction Times curve, all
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event recognition times improved by 5s (and all other variables held the same as in the base case.)
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Figure 3: DES-Generated Trade Space for Multiple UAV Network Design

Figure 3 illustrates that changing the switching strategy, reducing service times, and
reducing reaction times all lead to a shift in the tradeoff curve, such that the curves all improve
upon the base case. The best case depends on the desired outcomes of the designer, and is
potentially a subjective choice. If a designer wants the most objects identified, and there is not a
significant penalty in terms of time pressure, cost of operation, or safety then 6 UAVs with a
decision support system that can speed up target detection would be the best design choice.
However, if only 3 vehicles were available and wait times should be minimal, then a system with
improved reactions times in terms of emergent events would be the best case.

So as seen in Figure 3, the use of a DES can be very helpful in early design stages but as with
all modeling efforts, there are limitations. This DES modeling approach is not suitable for modeling
AV systems at a lower cognitive level where parallel processing is of interest. This is because a

primary assumption is that the operator is serially attending to complex tasks, in keeping with
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queuing theory. This kind of DES modeling is also not appropriate for modeling systems that entail
a low task loading, because the model in Figure 2 assumes at least 40% utilization (Donmez et al.,
2010), so systems with long latencies between human interactions would likely not be well
represented. This also relates to another major limitation that these models assume some level of
observable human-computer interaction. It remains an open questions how to use a DES approach
to model systems that require extensive monitoring with little action, such as multiple screen image

monitoring.

System Dynamic Modeling

There are a number of reasons that SD models are particularly appealing for modeling AV
systems. The first is the ability of SD models to capture non-linear processes (Sweetser, 1999).
Since human performance does not generally adhere to linear models (Gao & Lee, 2006), using non-
linear behavioral and performance representations will be critical for the external validity of the
model. Second, SD models can include both qualitative and quantitative data (Sterman, 2000), and
often qualitative data is essential to human performance modeling (Hancock & Szalma, 2004).
Third, SD models are effective at capturing the impact of latencies and feedback interactions on the
system, which is essential for modeling a human operator and the impact of delays in perception of
system performance on operator behavior and trust.

The SD modeling process can be broken down into five major phases (Sterman, 2000). First,
in the problem articulation stage, the overall problem that the model is attempting to represent is
identified, along with key variables to be captured within the boundary of the model. In the second
stage, a “dynamic hypothesis” is developed. A dynamic hypothesis is defined as a theory that
explains the behavior of the system as an endogenous consequence of the feedback structure of the
holistic system (Sterman, 2000). It is a working hypothesis that guides the modeling effort and is

continuously tested and refined throughout the model building and testing process.
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In the third stage, the dynamic hypothesis is mapped into causal loops and stocks and flows
in order to formulate the simulation model and estimate exogenous parameters. The SD community
defines endogenous variables simply as those variables which are calculated within the model,
while exogenous variables are assumed parameters which lie outside of the model boundary
(Sterman, 2000). The fourth stage, testing the model, includes comparison of model outputs to
experimental data sets, robustness under extreme conditions, and sensitivity analyses. The fifth
stage, policy design and evaluation, includes evaluating the ability of the model to predict
performance under new circumstances, which is why this method is useful in the conceptual design

phases of the systems engineering process.

The CHAS SD Model

Using the SD modeling phases described above, for the case of a single operator supervising
multiple autonomous vehicles, a Collaborative Human-Automation Scheduling (CHAS) model was
developed to capture non-linear human behavior and performance patterns, latencies and feedback
interactions in an autonomous system, as well as qualitative variables such as human trust in
automation (Clare, 2013). The CHAS model was developed to aid a designer of future AV systems by
simulating the impact of changes in system design and operator training on human and system
performance. This can reduce the need for time-consuming human-in-the-loop testing that is
typically required to evaluate such changes.

A collaborative, multiple AV simulation environment was used to develop the CHAS model,
called Onboard Planning System for UVs Supporting Expeditionary Reconnaissance and
Surveillance (OPS-USERS). This simulation environment leverages decentralized algorithms for
vehicle routing and task allocation (Figure 4). Operators controlled multiple, heterogeneous AVs for
the purpose of searching an area of interest for new targets, tracking these targets, and approving

weapons launch if a target was deemed hostile. The operators were able to assign tasks to the
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vehicles as a group, and schedules were presented to the operator for approval at various intervals
(called the replanning interval). More details about this test bed can be found elsewhere (Clare,
2010), but the primary difference between this simulation and RESCHU (Figure 1) is the degree of
autonomy between the AVs. In RESCHU, AVs shared very little information but in the OPS-USERS
paradigm, AVs were in constant communication, sharing significant packets of information. As a
result, the operator in OPS-USERS acts as a coach, calling plays that the vehicles independently
determine how to execute, but in RESCHU, the operator must command each and every vehicle.

A simplified CHAS model of the OPS-USERS environment is shown in Figure 5, which depicts
the three major feedback loops: the Trust in Automation loop, the Expectations Adjustment loop,
and the Cognitive Overload loop. These three loops consist of separate causal pathways. The full
diagram of the CHAS model is presented in Figure 6, showing the three main feedback loops (Clare,

2013).
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Figure 4. The OPS-USERS Test Bed

The Trust in Automation loop, shown in the red dashed line box in Figure 5 draws from the
“perception, cognition, action” loop in the human information processing model developed by
Wickens and Hollands (2000). The loop represents how the operator’s perception of the

performance of the system impacts his or her trust in the automation and thus influences the

16



operator’s decisions to intervene in the operations of the semi-autonomous vehicles. As shown in
Figure 5, the operator has a time-delayed perception of how the system is performing. The
operator’s trust during the mission begins at an initial level and then adjusts based on the
difference between the operator’s expectations of how well the system should be performing and
the operator’s perception of system performance.

[t is likely that the operator’s trust has some inertia (Lee & Moray, 1994) and thus adjusts

with a time delay. As the operator loses (or gains) trust in the AS, the operator will choose to

intervene more (or less) frequently, for example by creating new tasks for the AVs or requesting a

new schedule for the AVs. Similar results have been found in other work (Bailey & Scerbo, 2007).

This decision to intervene has an impact on the operations of the team of semi-autonomous AVs,
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which influences the performance of the system, completing the feedback loop.

Second, the Expectations Adjustment loop, shown in the green dashed line box, represents

how the operator’s expectations of performance can change throughout the mission. The operator’s
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initial expectations of performance are likely set by training, previous experience, or by instructions
from a supervisor. However, as the operator perceives how the system is actually performing, there
is likely a time-delayed adjustment of the operator’s expectations to conform to his or her
perceived reality of how well the system is doing.

Third, the Cognitive Overload loop, shown in the blue dashed line box, represents the
impact that excessive cognitive workload can have on system performance. The System Dynamics
modeling community typically separates the positive and negative effects of a variable into distinct
loops (Sterman, 2000). The Trust in Automation loop, as previously described, captures the positive
effects of increasing workload, assuming that an increasing rate of interventions leads to higher
performance. It should be noted that this assumption does not hold for all systems, as previous
studies have shown that frequent human intervention can potentially have a negative impact on
automation (Beck, Dzindolet, & Pierce, 2005; Parasuraman & Riley, 1997), as some decentralized
algorithms may need time to stabilize (Walker et al., 2012). The automation in the multiple UAV
control test bed used to validate CHAS has been found to be provably good, but suboptimal (Choi,
Brunet, & How, 2009), and previous experiments have shown that a moderate rate of intervention
results in higher performance than a low frequency of intervention (Clare, Maere, & Cummings,
2012; Cummings et al., 2010).

The CHAS model captures the fact that the frequency with which the operator decides to
intervene in the system also has an impact on human cognitive workload. The Cognitive Overload
loop only captures the negative effects of high workload, and thus is dormant when the operator
has low or moderate workload, having little effect on the model. Human workload is also driven by
task load, i.e. the level of tasking that an operator is asked to perform by the system (Clare &
Cummings, 2011). The feedback loop is completed by modeling the potential for cognitive overload,
where high levels of human workload can decrease the effectiveness of the operator’s interventions

in the system, thus decreasing system performance (Cummings & Guerlain, 2007; Rouse, 1983;
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Schmidt, 1978). This model is specifically designed to simulate moderate to high task load missions

but one limitation, as in the DES model, is the lack of investigation in low task load missions.
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Figure 6: Fully Developed CHAS Model with Major Core Components Labeled.
The CHAS model in Figures 5 and 6 has other limiting assumptions. First, the CHAS model is

a computational model of human behavior and decision-making and thus makes a number of
simplifications and assumptions about the complexities of human perception, cognition, emotions,
and decision-making. Second, the CHAS model requires sufficient data to validate and tune the
causal relationships throughout the model. Thus, the model is limited to assisting designers who
aim to make evolutionary changes to existing systems. Third, the CHAS model in its current form is
limited to simulating single operator, moderate to high task load, multiple UAV control missions.
The assumption is that the vehicles are semi-autonomous and the human operator only guides the
high-level goals of the vehicles, as opposed to guiding each individual vehicle. In addition, the CHAS
model assumes that the operator is physically removed from AV environment, thus there is no
direct human-robot interaction. Finally, the CHAS model does not consider vehicle failures,

communications delays, and safety policies.

19



SD Modeling as a Design Tool

Like the DES approach in Figure 2, the CHAS model enables tradespace exploration within a
much larger design space than would be possible using real systems. Variables that can either be
held constant or manipulated include the human operator’s abilities, the number of AVs or the level
of automation of the AVs. For example, a system designer may want to explore different skills sets
for human operators. As an illustration, recently the U.S. Air Force started a new program that
trains UAV operators with no piloting experience (Clark, 2012). It is not clear how new populations
such as these will be affected in terms of workload, and whether new tools or advanced automation
is needed to offset potential high workload conditions. It is possible that some operators can
sustain performance up to 80%, 90%, or even close to 100% utilization, while others begin to
experience cognitive overload as low as 50% utilization. For the purposes of this discussion, the
utilization level where cognitive overload begins will be called the cognitive overload onset point.

Thus, the CHAS model can aid a system designer in choosing the most appropriate level of

intervention given the different cognitive overload onset points of various operators. To

80%

75% bt

Area Coverage Performance
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o 50% e» e 70% ====90%

Figure 7: Comparing Increasing Cognitive Loads on Overall Performance
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demonstrate this, for a single operator-multiple autonomous vehicle (AV) control and supervision
task similar to that discussed in the previous section, the CHAS model was run with three different
levels of anticipated workload as defined as utilization or percent busy time, 50%, 70% and 90%.
As shown in Figure 7 where the x axis represents increasing task load as dictated by a group of
searching AVs generating search tasks every two minutes, and the performance metric as the
percentage of overall area searched, operators who can sustain performance at utilization levels up
to 90% can perhaps be prompted to intervene up to 6 times per two minute interval to maximize
system performance. In contrast, operators who begin to experience cognitive overload onset at
50% utilization should only be prompted to intervene 4.5 times per two minute interval.

[t is also notable that there is not a large performance improvement when moving from 4.5
to 6 search tasks per two minute interval. This indicates that the system may be robust to varying
skill levels and cognitive overload onset points, a key advantage of a goal-based architecture for
real-time human-automation collaborative scheduling. Thus the use of CHAS can help designers
determine such points of robustness so they can determine where the best use of resources likely
is. It is important to note that because of the complexity and interactions in these systems, there is
no known closed-form solution approach that could provide such boundary estimations so the use

of simulation to do so is a critical tool for system design exploration.

Model Comparison

Two different simulation approaches, discrete event simulation and system dynamics
modeling, were presented in the context of similar multiple AV control environments. Both
modeling approaches were designed to support the designers of future AV systems by simulating
the impact of alternate designs on vehicle, operator, and system performance. However, there is an
ongoing argument in the modeling community about the scenarios for which SD is more

appropriate than DES (i.e. Ozgiin & Barlas, 2009; Sweetser, 1999; Tako & Robinson, 2008). Given
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these two different modeling approaches, what can be said about which is better or more
appropriate in attempting to model human-complex system interaction in various situations?

In order to compare these two models, the DES model was adapted to those parameters of
the OPS-USERS test bed (Figure 4) using the data from an actual experiment with the OPS-USERS
test bed. In this experiment, 31 operators performed two 10-minute long simulated missions (A.S.
Clare & Cummings, 2011). Operators were prompted to view automation-generated schedules at
prescribed intervals of either 30 or 45 seconds. The two different frequencies of schedule
presentation served to modulate the task load of the operator, such that 30s replan intervals should
induce higher workload than the 45s intervals. All operators experienced both replan intervals in a
counterbalanced and randomized order.

The average observed utilization of operators in the 30s and 45s replan prompting interval
conditions is shown in Figure 8. The CHAS and DES models were then applied to simulate this
experiment, and the utilization results from these simulations are compared to the experimental
results, also in Figure 8. The DES model used to replicate the results of this experiment (called the
Multiple Unmanned Vehicle DES, or MUV-DES) was more accurate for the 30s replan prompting
interval condition as compared to the CHAS model, which had an average utilization prediction that
was higher than the experimental data. For the 45s replan prompting interval data, both models
were slightly off, although both predictions fell within the 95% confidence interval of the data. Both
models captured the decrease in utilization from the 30 to 45 second replan prompting interval
conditions.

While both models replicate average utilization values for the experimental data, a
qualitative comparison of the features of MUV-DES and the CHAS models is more revealing. The
DES model does not consider the interaction between human-AV system variables (i.e., the variable
inputs to the model), which can result in lower predictive accuracy. In addition, the DES model does

not explicitly consider the impact of trust on operator or system performance (Nehme, 2009).
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However, SD models do not represent variability in the data using the same probabilistic
distributions that DES models do so if the boundaries of system performance are of concern, SD
models fall short.

The CHAS model was built upon the DES model to capture the feedback interactions among
perception, workload, trust, decisions to intervene, and performance. It also explicitly represents
qualitative variables such as human trust and its impact on the rate at which humans intervene into
the operations of the team of AVs, and thus on system performance. The dynamics of trust are
captured by enabling trust to adjust over time throughout the mission with some inertia. This is
simply not possible in a DES formulation. One important caveat to the SD approach is that each
model is fine-tuned to represent a specific system under specific conditions, so the level of
abstraction is low with difficulty in generalizing the results beyond the specific system. Moreover, it
is difficult in terms of SD model building and validation when even small system changes are made.

Another important difference is that CHAS model can provide predictions of continuous
measures, a key attribute of all SD models. While the DES model provided predictions of system

performance based on the occurrence of events (such as the arrival of targets), this form of
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Figure 8: Average observed utilization for single operator-multiple UAV high task load
experiment, with CHAS and DES predictions and 95% confidence intervals.
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performance prediction is not as useful for a continuous performance metric such as area coverage.
Both the DES and the CHAS models have specific domains for which they are most
appropriate. The DES model is likely best suited for using probabilistic distributions to accurately
model an operator who is a serial processor of discrete tasks, such as visually identifying targets.
The CHAS model is better suited for modeling continuous performance feedback that is temporally
dependent and is affected by qualitative variables such as trust. These comparisons are
summarized in Table 1. Ultimately the best model is the one that enables diagnosticity, in that it
allows a system designer to more precisely characterize the reasons behind behavior and
performance patterns, but in a manner that reduces the reliance on assumptions and estimations

that may not be well characterized.

Table 1: A Comparison of Discrete Event Simulation and System Dynamics Models

Discrete Event Simulation System Dynamics Model
Model
Model classification Stochastic Deterministic
Includes qualitative No Yes
variables
Second order and higher No Yes
interactions represented
Models can be easily changed Yes No
to represent new system
parameters
Level of abstraction High Low
Model outputs Better for event-related Better for continuous measures
measures
Conclusion

With the move towards increasingly automated systems, the development of models that
can both replicate observed human-system behavior and predict likely outcomes given various
changes in automation architectures and human tasking will also become more critical. To this end,

this paper has discussed the application of two modeling techniques, discrete event simulation and
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system dynamics models, used predominantly in other settings, that can be extended to represent
various facets of supervisory control of autonomous systems. Ultimately such models enable cost
and time effective evaluations without conducting extensive experimentation, critical for the
rapidly evolving world of autonomous systems.

One area of research that is lacking is if and how these approaches could be combined for
autonomous systems modeling. SD models have been used to inform inputs for DES models and
vice versa (Chahal & Eldabi, 2008; Venkateswaran & Son, 2005) , but the only known integration of
the two models into a single model occurred in the domain of breast cancer screening where the
attempt was to determine the impact of various screening policies (Tejada, 2012). How to combine
these two modeling techniques for autonomous system supervisory control where the system has
potentially emergent behavior that could change significantly in response to system uncertainties is
aresearch area left unexplored.

A clear strength of the system dynamics approach is the ability to use qualitative variables,
while the discrete event simulation approach provides flexibility in exploring various system
architectures with inherent uncertainty not afforded by the systems dynamics approach. Given the
predominant role that human trust (a qualitative variable) plays in autonomous system operation,
such a hybrid model would be a very powerful design trade space exploration tool, especially since

autonomous systems embody significant stochastic reasoning.
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